Spectral Analysis on Infinite Sierpinski Fractafolds
نویسندگان
چکیده
Abstract. A fractafold, a space that is locally modeled on a specified fractal, is the fractal equivalent of a manifold. For compact fractafolds based on the Sierpiński gasket, it was shown by the first author how to compute the discrete spectrum of the Laplacian in terms of the spectrum of a finite graph Laplacian. A similar problem was solved by the second author for the case of infinite blowups of a Sierpiński gasket, where spectrum is pure point of infinite multiplicity. Both works used the method of spectral decimations to obtain explicit description of the eigenvalues and eigenfunctions. In this paper we combine the ideas from these earlier works to obtain a description of the spectral resolution of the Laplacian for noncompact fractafolds. Our main abstract results enable us to obtain a completely explicit description of the spectral resolution of the fractafold Laplacian. For some specific examples we turn the spectral resolution into a “Plancherel formula”. We also present such a formula for the graph Laplacian on the 3-regular tree, which appears to be a new result of independent interest. In the end we discuss periodic fractafolds and fractal fields.
منابع مشابه
Fractafolds Based on the Sierpinski Gasket and Their Spectra
We introduce the notion of “fractafold”, which is to a fractal what a manifold is to a Euclidean half-space. We specialize to the case when the fractal is the Sierpinski gasket SG. We show that each such compact fractafold can be given by a cellular construction based on a finite cell graph G, which is 3-regular in the case that the fractafold has no boundary. We show explicitly how to obtain t...
متن کاملGradients of Laplacian Eigenfunctions on the Sierpinski Gasket
We use spectral decimation to provide formulae for computing the harmonic tangents and gradients of Laplacian eigenfunctions on the Sierpinski Gasket. These formulae are given in terms of special functions that are defined as infinite products.
متن کاملSpectral triples and the geometry of fractals
We construct spectral triples for the Sierpinski gasket as infinite sums of unbounded Fredholm modules associated with the holes in the gasket and investigate their properties. For each element in the K-homology group we find a representative induced by one of our spectral triples. Not all of these triples, however, will have the right geometric properties. If we want the metric induced by the ...
متن کاملDirac operators and spectral triples for some fractal sets built on curves
We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral...
متن کاملWiener Way to Dimensionality
This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...
متن کامل